LargeDeformations: Torsion of a hyperelastic bar

This page is based on a Jupyter notebook.

Convergence under large deformations (preliminary)

In this benchmark we impose large tensile and torsional deformations on a hyperelastic prismatic bar. The material model is a Saint-Venant-Kirchhoff material law for initial testing.

import os(click to toggle)
import os
from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
import ogstools as ot
import pandas as pd
import pyvista as pv
from ogstools.logparser import fill_ogs_context, parse_file
pv.set_plot_theme("document")(click to toggle)
pv.set_plot_theme("document")
pv.set_jupyter_backend("static")

# Some plot settings
plt.rcParams["lines.linewidth"] = 2.0
plt.rcParams["lines.color"] = "black"
plt.rcParams["legend.frameon"] = True
plt.rcParams["font.family"] = "serif"
plt.rcParams["legend.fontsize"] = 14
plt.rcParams["font.size"] = 14
plt.rcParams["axes.spines.right"] = False
plt.rcParams["axes.spines.top"] = False
plt.rcParams["axes.spines.left"] = True
plt.rcParams["axes.spines.bottom"] = True
plt.rcParams["axes.axisbelow"] = True
plt.rcParams["figure.figsize"] = (8, 6)

Boundary conditions

The bar of dimensions $1 \times 1 \times 6$ m³ is stretched by $\lambda = 1.5$ in the axial direction and twisted by 180°. The following graph illustrates the torsion bc.

def R(x, y):(click to toggle)
def R(x, y):
    return np.sqrt(x**2 + y**2)


def phi(x, y):
    theta = np.arctan2(y, x)
    return np.where(theta < 0, theta + 2 * np.pi, theta)


def u(x, y):
    ux = R(x, y) * np.cos(phi(x, y) + np.pi / 20) - x
    uy = R(x, y) * np.sin(phi(x, y) + np.pi / 20) - y
    return [ux, uy]
x = np.linspace(-0.5, 0.5, 10)(click to toggle)
x = np.linspace(-0.5, 0.5, 10)
y = x.copy()
X, Y = np.meshgrid(x, y)
fig, ax = plt.subplots()
ax.plot(X, Y, marker="s", color="red", ls="", alpha=0.5)
ax.quiver(X, Y, u(X, Y)[0], u(X, Y)[1], pivot="mid")
ax.set_aspect("equal")
ax.set_xlabel("$x$ / m")
ax.set_ylabel("$y$ / m")
ax.set_title("Displacement-controlled torsion on face of prismatic bar")
fig.tight_layout()

png

out_dir = Path(os.environ.get("OGS_TESTRUNNER_OUT_DIR", "_out"))(click to toggle)
out_dir = Path(os.environ.get("OGS_TESTRUNNER_OUT_DIR", "_out"))
if not out_dir.exists():
    out_dir.mkdir(parents=True)
model = ot.Project(input_file="bar1to6_torsion.prj", output_file="bar1to6_torsion.prj")(click to toggle)
model = ot.Project(input_file="bar1to6_torsion.prj", output_file="bar1to6_torsion.prj")
model.run_model(logfile=f"{out_dir}/out.txt", args=f"-o {out_dir}")(click to toggle)
model.run_model(logfile=f"{out_dir}/out.txt", args=f"-o {out_dir}")
OGS finished with project file bar1to6_torsion.prj.
Execution took 3.2748804092407227 s
Project file written to output.

Let’s plot the result.

reader = pv.get_reader(f"{out_dir}/bar1to6_torsion.pvd")(click to toggle)
reader = pv.get_reader(f"{out_dir}/bar1to6_torsion.pvd")
print(reader.time_values)
reader.set_active_time_value(0.05)
mesh = reader.read()[0]
[0.0, 0.01, 0.02, 0.03, 0.04, 0.05]
plotter = pv.Plotter(shape=(1, 2), window_size=[1000, 500])(click to toggle)
plotter = pv.Plotter(shape=(1, 2), window_size=[1000, 500])

warped = mesh.warp_by_vector("displacement")
plotter.subplot(0, 0)
plotter.add_mesh(mesh, show_edges=True, show_scalar_bar=False, color=None, scalars=None)
plotter.show_bounds(
    ticks="outside", xtitle="x / m", ytitle="y / m", ztitle="z / m", font_size=10
)
plotter.add_axes()
plotter.view_isometric()
plotter.add_text("undeformed", font_size=10)

plotter.subplot(0, 1)
plotter.add_mesh(
    warped, show_edges=True, show_scalar_bar=None, color=None, scalars="displacement"
)
plotter.view_isometric()
plotter.add_text("deformed", font_size=10)
plotter.show()

png

Convergence

What we’re more interested in, is the convergence behaviour over time. The large deformations were applied in only 5 load steps to challenge the algorithm.

log_file_raw = parse_file(f"{out_dir}/out.txt")(click to toggle)
log_file_raw = parse_file(f"{out_dir}/out.txt")
log_file_df = pd.DataFrame(log_file_raw)
ogs_log_context = fill_ogs_context(log_file_df)
last_ts = ogs_log_context["time_step"].to_numpy()[-1](click to toggle)
last_ts = ogs_log_context["time_step"].to_numpy()[-1]
fig, ax = plt.subplots()
for i in range(1, last_ts + 1):
    timestep = ogs_log_context[ogs_log_context["time_step"] == i]
    ax.plot(
        timestep["iteration_number"],
        timestep["dx"],
        label=f"timestep {i}",
        color="darkblue",
        alpha=i / (last_ts + 1),
    )

ax.axhline(1e-13, ls="--", label="convergence criterion")
ax.plot([7, 8, 7, 7], [1e-6, 1e-12, 1e-12, 1e-6], color="black")
ax.text(7.3, 2e-12, "1")
ax.text(6.7, 1e-9, "2")
ax.set_yscale("log")
ax.set_xlabel("iteration number")
ax.set_ylabel("$|| \\Delta \\vec{u}$ || / m")
ax.legend()
fig.tight_layout()

png

We observe quadratic convergence in the proximity of the solution supporting the implementation of the geometric stiffness matrix.


This article was written by Thomas Nagel. If you are missing something or you find an error please let us know.
Generated with Hugo 0.122.0 in CI job 511216 | Last revision: March 2, 2023