The notched beam under three-point bending is simulated to show how the phase field models can capture crack propagation and the structural strength. The geometry and boundary conditions of the model are depicted below. The bottom left point is fixed on both $x$ and $y$ directions and bottom right point is fixed on the $y$ direction. A displacement boundary condition $u^{\ast}$ is applied on the midpoint of the upper edge. The crack will initiate at the notch tip and propagate upward to the upper edge.
The force-displacement curves ($F^{\ast}$-$u^{\ast}$) for various sets of the above models will be recorded and compared with the experimental data.
import os
…
(click to toggle)
import os
import shutil
import time
from pathlib import Path
from subprocess import run
from types import MethodType
from xml.dom import minidom
import matplotlib.pyplot as plt
import numpy as np
import ogstools as ot
import pandas as pd
import pyvista as pv
data_dir = os.environ.get("OGS_DATA_DIR", "../../..")
…
(click to toggle)
data_dir = os.environ.get("OGS_DATA_DIR", "../../..")
out_dir = Path(os.environ.get("OGS_TESTRUNNER_OUT_DIR", "_out"))
if not out_dir.exists():
out_dir.mkdir(parents=True)
output_dir = out_dir
# define function to replace a specific curve, given by name
def replace_curve(
self,
name=None,
value=None,
coords=None,
parametertype=None,
valuetag="values",
coordstag="coords",
):
root = self._get_root()
parameterpath = "./curves/curve"
parameterpointer = self._get_parameter_pointer(root, name, parameterpath)
self._set_type_value(parameterpointer, value, parametertype, valuetag=valuetag)
self._set_type_value(parameterpointer, coords, parametertype, valuetag=coordstag)
# define function to change time_stepping in project file
def set_timestepping(model, repeat_list, delta_t_list):
model.remove_element(
xpath="./time_loop/processes/process/time_stepping/timesteps/pair"
)
for i in range(len(repeat_list)):
model.add_block(
blocktag="pair",
parent_xpath="./time_loop/processes/process/time_stepping/timesteps",
taglist=["repeat", "delta_t"],
textlist=[repeat_list[i], delta_t_list[i]],
)
def ogs_TPB(
…
(click to toggle)
def ogs_TPB(
phasefield_model,
energy_split_model,
softening_curve="Linear",
length_scale=5.0,
bc_displacement=-1.0,
ts_coords="0 1.0",
values="0 1.0",
repeat_list=None,
delta_t_list=None,
hypre=False,
MPI=True,
ncores=4,
):
## define input file
without_hypre = "-ksp_type cg -pc_type bjacobi -ksp_atol 1e-14 -ksp_rtol 1e-14"
with_hypre = "-ksp_type cg -pc_type hypre -pc_hypre_type boomeramg -pc_hypre_boomeramg_strong_threshold 0.7 -ksp_atol 1e-8 -ksp_rtol 1e-8"
prj_name = "TPB.prj"
print(
f"> Running three point bending test {phasefield_model} - {energy_split_model} - {softening_curve} ... <"
)
logfile = f"{out_dir}/log_{phasefield_model}_{energy_split_model}.txt"
model = ot.Project(
input_file=prj_name, output_file=f"{out_dir}/{prj_name}", MKL=True
)
# generate prefix from properties
prefix = f"{phasefield_model}" + f"_{energy_split_model}"
if phasefield_model == "COHESIVE":
prefix = (
f"{phasefield_model}" + f"_{energy_split_model}" + f"_{softening_curve}"
)
if MPI:
# partition mesh
run(
f"NodeReordering -i TPB.vtu -o {out_dir}/TPB.vtu >> {logfile}",
shell=True,
check=True,
)
run(
f"constructMeshesFromGeometry -m {out_dir}/TPB.vtu -g TPB.gml >> {logfile}",
shell=True,
check=True,
)
shutil.move("TPB_left.vtu", f"{out_dir}/TPB_left.vtu")
shutil.move("TPB_right.vtu", f"{out_dir}/TPB_right.vtu")
shutil.move("TPB_top.vtu", f"{out_dir}/TPB_top.vtu")
shutil.copy("TPB.gml", f"{out_dir}/TPB.gml")
run(
f"partmesh -s -o {out_dir} -i {out_dir}/TPB.vtu >> {logfile}",
shell=True,
check=True,
)
run(
f"partmesh -m -n {ncores} -o {out_dir} -i {out_dir}/TPB.vtu -- {out_dir}/TPB_right.vtu {out_dir}/TPB_left.vtu {out_dir}/TPB_top.vtu >> {logfile}",
shell=True,
check=True,
)
else:
run(
f"NodeReordering -i TPB.vtu -o {out_dir}/TPB.vtu >> {logfile}",
shell=True,
check=True,
)
# change properties in prj file
model = ot.Project(
input_file=prj_name, output_file=f"{out_dir}/{prj_name}", MKL=True
)
model.replace_parameter_value(name="ls", value=length_scale)
model.replace_text(phasefield_model, xpath="./processes/process/phasefield_model")
model.replace_text(
energy_split_model, xpath="./processes/process/energy_split_model"
)
model.replace_text(softening_curve, xpath="./processes/process/softening_curve")
model.replace_text(prefix, xpath="./time_loop/output/prefix")
model.replace_parameter_value(name="dirichlet_load", value=bc_displacement)
model.replace_curve = MethodType(replace_curve, model)
model.replace_curve(name="dirichlet_time", value=values, coords=ts_coords)
if repeat_list is not None and delta_t_list is not None:
set_timestepping(model, repeat_list, delta_t_list)
else:
set_timestepping(model, ["1"], ["1e-2"])
if hypre is True:
model.replace_text(
with_hypre,
xpath="./linear_solvers/linear_solver/petsc/parameters",
occurrence=1,
)
else:
model.replace_text(
without_hypre,
xpath="./linear_solvers/linear_solver/petsc/parameters",
occurrence=1,
)
model.replace_text("TPB.gml", xpath="./geometry")
model.write_input()
# run ogs
t0 = time.time()
if MPI:
print(f" > OGS started execution with MPI - {ncores} cores...")
run(
f"mpirun --bind-to none -np {ncores} ogs {out_dir}/{prj_name} -o {output_dir} >> {logfile}",
shell=True,
check=True,
)
else:
print(" > OGS started execution ...")
run(
f"ogs {out_dir}/{prj_name} -o {output_dir} >> {logfile}",
shell=True,
check=True,
)
tf = time.time()
print(" > OGS terminated execution. Elapsed time: ", round(tf - t0, 2), " s.")
The general parameters are chosen as follows.
Name | Value | Unit | Symbol |
---|---|---|---|
Young’s modulus | 20000 | MPa | $E$ |
Poisson’s ratio | 0.2 | $-$ | $v$ |
Critical energy release rate | 0.113 | N/mm | $G_{c}$ |
Regularization parameter | 5 | mm | $\ell$ |
Minimum element size | 1 | mm | $h$ |
The material parameters for the COHESIVE model are as follows.
Name | Value | Unit | Symbol |
---|---|---|---|
Tensile strength | 2.4 | MPa | $f_t$ |
Irwin’s length | 392.4 | mm | $\ell_{ch}$ |
In the following, coarse time steps are chosen for the sake of less computational cost.
# phasefield_model = ["COHESIVE",'AT1', 'AT2']
…
(click to toggle)
# phasefield_model = ["COHESIVE",'AT1', 'AT2']
# energy_split_model = ["EffectiveStress",'VolumetricDeviatoric','Isotropic']
# softening_curve = ['Line','Exponential']
disp = -1.0
ls = 5.0
mpi_cores = 4 # MPI cores
## only run selected cases
# For the COHESIVE model
for a in ["Linear", "Exponential"]:
ogs_TPB(
"COHESIVE",
"EffectiveStress",
a,
length_scale=ls,
bc_displacement=disp,
repeat_list=["1"],
delta_t_list=["1e-1"],
ncores=mpi_cores,
)
# For AT1 and AT2 models with isotropic split
for b in ["AT1", "AT2"]:
ogs_TPB(
b,
"Isotropic",
length_scale=ls,
bc_displacement=disp,
repeat_list=["1"],
delta_t_list=["1e-1"],
ncores=mpi_cores,
)
> Running three point bending test COHESIVE - EffectiveStress - Linear ... <
> OGS started execution with MPI - 4 cores...
> OGS terminated execution. Elapsed time: 31.21 s.
> Running three point bending test COHESIVE - EffectiveStress - Exponential ... <
> OGS started execution with MPI - 4 cores...
> OGS terminated execution. Elapsed time: 47.29 s.
> Running three point bending test AT1 - Isotropic - Linear ... <
> OGS started execution with MPI - 4 cores...
> OGS terminated execution. Elapsed time: 27.78 s.
> Running three point bending test AT2 - Isotropic - Linear ... <
> OGS started execution with MPI - 4 cores...
> OGS terminated execution. Elapsed time: 27.81 s.
The phase field profile in the final time step of the COHESIVE EffectiveStress case with Exponential softening is shown below.
The force-displacement curves ($F^{\ast}$-$u^{\ast}$) applied to the beam are compared.
# define function to obtain displacement applied at the loading point from vtu file
…
(click to toggle)
# define function to obtain displacement applied at the loading point from vtu file
def displ_midpoint(filename):
data = pv.read(filename)
return np.sum(
data.point_data["displacement"][:, 1],
where=(data.points[:, 0] == 225) * (data.points[:, 1] == 100),
)
# define function to obtain force at the loading point from vtu file
def force_midpoint(filename):
data = pv.read(filename)
return (
np.sum(
data.point_data["NodalForces"][:, 1],
where=(data.points[:, 0] == 225) * (data.points[:, 1] == 100),
)
/ 10.0
)
# define function to apply the above functions on all vtu files listed in pvd file, returning force-displacement curves
def force_displ_from_pvd(pvd):
doc = minidom.parse(pvd)
DataSets = doc.getElementsByTagName("DataSet")
vtu_files = [x.getAttribute("file") for x in DataSets]
forces_midpoint = [force_midpoint(f"{out_dir}/{x}") for x in vtu_files]
displs_midpoint = [displ_midpoint(f"{out_dir}/{x}") for x in vtu_files]
return [forces_midpoint, displs_midpoint]
# Load experimental data
…
(click to toggle)
# Load experimental data
data_lower = pd.read_csv("figures/experiment_data_lower_limit.csv")
data_upper = pd.read_csv("figures/experiment_data_upper_limit.csv")
prefixes = [
…
(click to toggle)
prefixes = [
"AT1_Isotropic",
"AT2_Isotropic",
"COHESIVE_EffectiveStress_Linear",
"COHESIVE_EffectiveStress_Exponential",
]
labels = [
r"${AT}_1$ Isotropic",
r"${AT}_2$ Isotropic",
r"${COHESIVE}$ EffectiveStress Linear",
r"${COHESIVE}$ EffectiveStress Exponential",
]
ls = ["-.", "--", ".", "-"]
colors = ["#ffdf4d", "#006ddb", "#8f4e00", "#ff6db6"]
fig, ax = plt.subplots()
for i, pre in enumerate(prefixes):
pvd = f"{output_dir}/{pre}.pvd"
if Path(pvd).is_file():
curve = force_displ_from_pvd(pvd)
plt.plot(
curve[1],
curve[0],
ls[i % 2],
label=labels[i],
linewidth=2,
color=colors[i],
alpha=1,
)
plt.rcParams["xtick.labelsize"] = 12
plt.rcParams["ytick.labelsize"] = 12
ax.grid(linestyle="dashed")
ax.set_xlabel("$u^{\\ast}$ [mm]", fontsize=12)
ax.set_ylabel("$F^{\\ast}$ [kN]", fontsize=12)
plt.xlim(plt.xlim()[::-1])
plt.ylim(plt.ylim()[::-1])
plt.legend(ncol=1)
ax.axhline(y=0, color="black", linewidth=1)
ax.axvline(x=0, color="black", linewidth=1)
plt.fill_between(
data_upper.iloc[:, 0], 0, data_upper.iloc[:, 1], facecolor="green", alpha=0.3
)
plt.fill_between(
data_lower.iloc[:, 0], 0, data_lower.iloc[:, 1], facecolor="white", alpha=1
)
<matplotlib.collections.FillBetweenPolyCollection at 0x7b5bfefa2270>
Running all the selected cases with fine time steps (100 steps) yields the following figure in which the green patch bounds the experimental data. The cohesive models match the experimental results better than $\texttt{AT}_1$ and $\texttt{AT}_2$.
This article was written by Tao You, Keita Yoshioka, Mostafa Mollaali. If you are missing something or you find an error please let us know.
Generated with Hugo 0.122.0
in CI job 509814
|
Last revision: November 28, 2022