Considering a strain decomposition: $\mathbf\epsilon = \underbrace{\mathbf\epsilon- \frac{1}{3}(\epsilon:\mathbf I)}_{\text{deviatoric}}\I + \underbrace{\frac{1}{3}(\epsilon:\mathbf I)}_{\text{dilatational}} \I$. The idea of the B bar method is to use another quadrature rule to interpolate the dilatational part, which leads to a modified B matrix [1]:
$$ \bar\B = \underbrace{\B - \B^{\text{dil}}}_{\text{original B elements}}+ \underbrace{{\bar\B}^{\text{dil}}}_{\text{by another quadrature rule} } $$There are several methods to form ${\bar\B}^{\text{dil}}$ such as selective integration, generalization of the mean-dilatation formulation. In the current OGS, we use the latter, which reads
$$ {\bar\B}^{\text{dil}} = \frac{\intD{\B^{\text{dil}}(\xi)}}{\intD{}} $$To verify the implementation of the B bar method, the so called Cook’s membrane is used as a benchmark. Illustrated in the following figure, this example simulates a tapered and swept panel of unit thickness. The left edge is clamped and the right edge is applied with a distributed shearing load $F$ = 100 N/mm. The plane strain condition is considered. This numerical model is exactly the same as that is presented in the paper by T. Elguedj et al [1,2].
[1] T.J.R. Hughes (1980). Generalization of selective integration procedures to anisotropic and nonlinear media. International Journal for Numerical Methods in Engineering, 15(9), 1413-1418.
[2] T. Elguedj, Y. Bazilevs, V.M. Calo, T.J.R. Hughes (2008), $\bar\B$ and $\bar\F$ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Computer Methods in Applied Mechanics and Engineering, 197(33–40), 2732-2762.
import os
…
(click to toggle)
import os
import xml.etree.ElementTree as ET
from pathlib import Path
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import numpy as np
import ogstools as ot
import pyvista as pv
import vtuIO
out_dir = Path(os.environ.get("OGS_TESTRUNNER_OUT_DIR", "_out"))
if not out_dir.exists():
out_dir.mkdir(parents=True)
def get_last_vtu_file_name(pvd_file_name):
…
(click to toggle)
def get_last_vtu_file_name(pvd_file_name):
tree = ET.parse(Path(out_dir) / pvd_file_name)
root = tree.getroot()
# Get the last DataSet tag
last_dataset = root.findall(".//DataSet")[-1]
# Get the 'file' attribute of the last DataSet tag
file_attribute = last_dataset.attrib["file"]
return f"{out_dir}/" + file_attribute
def get_top_uy(pvd_file_name):
top_point = (48.0e-3, 60.0e-3, 0)
file_name = get_last_vtu_file_name(pvd_file_name)
mesh = pv.read(file_name)
p_id = mesh.find_closest_point(top_point)
u = mesh.point_data["displacement"][p_id]
return u[1]
def run_single_test(mesh_name, output_prefix, use_bbar="false"):
…
(click to toggle)
def run_single_test(mesh_name, output_prefix, use_bbar="false"):
model = ot.Project(
input_file="CooksMembrane.prj", output_file=f"{out_dir}/modified.prj"
)
model.replace_text(mesh_name, xpath="./mesh")
model.replace_text(use_bbar, xpath="./processes/process/use_b_bar")
model.replace_text(output_prefix, xpath="./time_loop/output/prefix")
model.replace_text(
"BiCGSTAB", xpath="./linear_solvers/linear_solver/eigen/solver_type"
)
model.replace_text("ILUT", xpath="./linear_solvers/linear_solver/eigen/precon_type")
vtu_file_name = output_prefix + "_ts_1_t_1.000000.vtu"
model.replace_text(vtu_file_name, xpath="./test_definition/vtkdiff[1]/file")
model.replace_text(vtu_file_name, xpath="./test_definition/vtkdiff[2]/file")
model.replace_text(vtu_file_name, xpath="./test_definition/vtkdiff[3]/file")
model.write_input()
# Run OGS
model.run_model(logfile=f"{out_dir}/out.txt", args=f"-o {out_dir} -m .")
# Get uy at the top
return get_top_uy(output_prefix + ".pvd")
mesh_names = [
…
(click to toggle)
mesh_names = [
"mesh.vtu",
"mesh_n10.vtu",
"mesh_n15.vtu",
"mesh_n20.vtu",
"mesh_n25.vtu",
"mesh_n30.vtu",
]
output_prefices_non_bbar = [
"cooks_membrane_sd_edge_div_4_non_bbar",
"cooks_membrane_sd_refined_mesh_10_non_bbar",
"cooks_membrane_sd_refined_mesh_15_non_bbar",
"cooks_membrane_sd_refined_mesh_20_non_bbar",
"cooks_membrane_sd_refined_mesh_25_non_bbar",
"cooks_membrane_sd_refined_mesh_30_non_bbar",
]
uys_at_top_non_bbar = []
for mesh_name, output_prefix in zip(mesh_names, output_prefices_non_bbar):
uy_at_top = run_single_test(mesh_name, output_prefix)
uys_at_top_non_bbar.append(uy_at_top)
expected_uys_at_top_non_bbar = np.array(
[
0.002164586784123102,
0.0022603329644579383,
0.002375295856067169,
0.002519725590136146,
0.0026515294133790837,
0.002868289617025223,
]
)
np.testing.assert_allclose(
actual=uys_at_top_non_bbar, desired=expected_uys_at_top_non_bbar, atol=1e-10
)
OGS finished with project file /var/lib/gitlab-runner/builds/vZ6vnZiU/0/ogs/build/release-all/Tests/Data/Mechanics/CooksMembrane/CooksMembraneBbar/modified.prj.
Execution took 0.16510272026062012 s
Project file written to output.
OGS finished with project file /var/lib/gitlab-runner/builds/vZ6vnZiU/0/ogs/build/release-all/Tests/Data/Mechanics/CooksMembrane/CooksMembraneBbar/modified.prj.
Execution took 0.16062068939208984 s
Project file written to output.
OGS finished with project file /var/lib/gitlab-runner/builds/vZ6vnZiU/0/ogs/build/release-all/Tests/Data/Mechanics/CooksMembrane/CooksMembraneBbar/modified.prj.
Execution took 0.1696789264678955 s
Project file written to output.
OGS finished with project file /var/lib/gitlab-runner/builds/vZ6vnZiU/0/ogs/build/release-all/Tests/Data/Mechanics/CooksMembrane/CooksMembraneBbar/modified.prj.
Execution took 0.1797497272491455 s
Project file written to output.
OGS finished with project file /var/lib/gitlab-runner/builds/vZ6vnZiU/0/ogs/build/release-all/Tests/Data/Mechanics/CooksMembrane/CooksMembraneBbar/modified.prj.
Execution took 0.1856687068939209 s
Project file written to output.
OGS finished with project file /var/lib/gitlab-runner/builds/vZ6vnZiU/0/ogs/build/release-all/Tests/Data/Mechanics/CooksMembrane/CooksMembraneBbar/modified.prj.
Execution took 0.2217247486114502 s
Project file written to output.
output_prefices = [
…
(click to toggle)
output_prefices = [
"cooks_membrane_sd_edge_div_4",
"cooks_membrane_sd_refined_mesh_10",
"cooks_membrane_sd_refined_mesh_15",
"cooks_membrane_sd_refined_mesh_20",
"cooks_membrane_sd_refined_mesh_25",
"cooks_membrane_sd_refined_mesh_30",
]
uys_at_top_bbar = []
for mesh_name, output_prefix in zip(mesh_names, output_prefices):
uy_at_top = run_single_test(mesh_name, output_prefix, "true")
uys_at_top_bbar.append(uy_at_top)
expected_uys_at_top_bbar = np.array(
[
0.0069574713856979,
0.007772616910217863,
0.007897597955618913,
0.007951479575082158,
0.007976349858390623,
0.007999718483861992,
]
)
np.testing.assert_allclose(
actual=uys_at_top_bbar, desired=expected_uys_at_top_bbar, atol=2e-4
)
OGS finished with project file /var/lib/gitlab-runner/builds/vZ6vnZiU/0/ogs/build/release-all/Tests/Data/Mechanics/CooksMembrane/CooksMembraneBbar/modified.prj.
Execution took 0.15958213806152344 s
Project file written to output.
OGS finished with project file /var/lib/gitlab-runner/builds/vZ6vnZiU/0/ogs/build/release-all/Tests/Data/Mechanics/CooksMembrane/CooksMembraneBbar/modified.prj.
Execution took 0.1732478141784668 s
Project file written to output.
OGS finished with project file /var/lib/gitlab-runner/builds/vZ6vnZiU/0/ogs/build/release-all/Tests/Data/Mechanics/CooksMembrane/CooksMembraneBbar/modified.prj.
Execution took 0.17705893516540527 s
Project file written to output.
OGS finished with project file /var/lib/gitlab-runner/builds/vZ6vnZiU/0/ogs/build/release-all/Tests/Data/Mechanics/CooksMembrane/CooksMembraneBbar/modified.prj.
Execution took 0.17297983169555664 s
Project file written to output.
OGS finished with project file /var/lib/gitlab-runner/builds/vZ6vnZiU/0/ogs/build/release-all/Tests/Data/Mechanics/CooksMembrane/CooksMembraneBbar/modified.prj.
Execution took 0.19629740715026855 s
Project file written to output.
OGS finished with project file /var/lib/gitlab-runner/builds/vZ6vnZiU/0/ogs/build/release-all/Tests/Data/Mechanics/CooksMembrane/CooksMembraneBbar/modified.prj.
Execution took 0.22405028343200684 s
Project file written to output.
ne = [4, 10, 15, 20, 25, 30]
…
(click to toggle)
ne = [4, 10, 15, 20, 25, 30]
def plot_data(ne, u_y_bbar, uy_non_bbar, file_name=""):
# Plotting
plt.rcParams["figure.figsize"] = [5, 5]
if len(u_y_bbar) != 0:
plt.plot(
ne, np.array(u_y_bbar) * 1e3, marker="o", linestyle="dashed", label="B bar"
)
if len(uy_non_bbar) != 0:
plt.plot(
ne,
np.array(uy_non_bbar) * 1e3,
marker="x",
linestyle="dashed",
label="non B bar",
)
plt.xlabel("Number of elements per side")
plt.ylabel("Top right corner displacement /mm")
plt.legend()
plt.tight_layout()
if file_name != "":
plt.savefig(file_name)
plt.show()
The following figure shows that the convergence of the solutions obtained by using the B bar method follows the one presented in the paper by T. Elguedj et al [1]. However, the results obtained without the B bar method are quit far from the converged solution with the finest mesh.
plot_data(ne, uys_at_top_bbar, uys_at_top_non_bbar, "b_bar_linear.png")
nedges = ["4", "10", "15", "20", "25", "30"]
…
(click to toggle)
nedges = ["4", "10", "15", "20", "25", "30"]
def contour_plot(pvd_file_name, title):
file_name = get_last_vtu_file_name(pvd_file_name)
m_plot = vtuIO.VTUIO(file_name, dim=2)
triang = tri.Triangulation(m_plot.points[:, 0], m_plot.points[:, 1])
triang = tri.Triangulation(m_plot.points[:, 0], m_plot.points[:, 1])
s_plot = m_plot.get_point_field("sigma")
s_trace = s_plot[:, 0] + s_plot[:, 1] + s_plot[:, 2]
u_plot = m_plot.get_point_field("displacement")
fig, ax = plt.subplots(ncols=2, figsize=(8, 3))
ax[0].set_title(title, loc="left", y=1.12)
plt.subplots_adjust(wspace=0.5)
contour_stress = ax[0].tricontourf(triang, s_trace, cmap="viridis")
contour_displacement = ax[1].tricontourf(triang, u_plot[:, 1], cmap="gist_rainbow")
fig.colorbar(contour_stress, ax=ax[0], label="Stress trace / MPa")
fig.colorbar(contour_displacement, ax=ax[1], label="Dispplacement / m")
fig.tight_layout()
plt.savefig(pvd_file_name + ".png")
plt.show()
for nedge, output_prefix in zip(nedges, output_prefices_non_bbar):
contour_plot(output_prefix + ".pvd", "Number of elements per side: " + nedge)
for nedge, output_prefix in zip(nedges, output_prefices):
contour_plot(output_prefix + ".pvd", "Number of elements per side: " + nedge)
The contour plots show that even with the coarsest mesh, the B bar method still gives reasonable stress result.
This article was written by Wenqing Wang. If you are missing something or you find an error please let us know.
Generated with Hugo 0.122.0
in CI job 504124
|
Last revision: June 11, 2024