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1 Preliminary remarks

OGS does not have any module that automatically takes care of unit consistency. This is the user’s job. In
many cases, units are obvious, but in some cases one might have to burn some sugar in one’s brain. What
helps, is looking at the implemented equations and making sure that indeed all units are consistent. The
PDE alone may not be sufficient for this exercise; instead, the weak form provides the most insight into
the implemented situation. We’ll illustrate this here using a simple example.

This document touches but a minor part of the conventions used in OGS. More important definitions are
listed in our documentation.

Typical questions by users regarding units are:

• In what units should I give the Neumann boundary conditions?

• In what units should I give the source terms?

• What signs do the boundary conditions and source terms have?

• Do the units change when I switch from 3D, to 2D, or to axisymmetric?

• ...

2 Example: fluid phase mass balance

2.1 The PDE

Most of our processes involve a hydraulic process of some sort. We take a simple saturated flow case as
an example here, departing from a general source-free mass balance.

dαϱα
dt

+ ϱα divvα = 0 (1)

∂ϱα
∂t

+ div (ϱαvα) = 0 (2)

From the mass balance of an intrinsically compressible solid we can obtain:

dSϕ

dt
= (αB − ϕ)

[
divvS + βp,SR

dSp

dt

]
(3)

Allowing the fluid-phase to be compressible as well, we arrive at a typical formulation:

ϱLR [ϕβp,LR + (αB − ϕ)βp,SR]
dSpLR

dt
+ div (ϱLRw̃LS) + αBϱLR divvS = 0 (4)

Typically, Darcy’s laws will be used:

w̃LS = − k

µLR
( grad pLR − ϱLRb) (5)
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2.2 The weak form

The finite element method rests on weighted residuals. More specifically, OGS uses a Bubnov-Galerkin
scheme where test functions are introduced to transform the strong form of the PDE into its weak form.
Using standard function spaces we arrive at the following form after a few manipulations

∫
Ω
vpϱLR [ϕβp,LR + (αB − ϕ)βp,SR]

dSpLR

dt
dΩ−

∫
Ω
ϱLRw̃LS · gradvp dΩ+ (6)

+

∫
Ω
αBϱLR divvS dΩ =

∫
∂ΩN

vp ¯̇mLS dΓ (7)

which also give rise to the natural (Neumann) boundary conditions.

2.3 Boundary conditions

Now, the boundary conditions can be clearly defined

p = p̄ on ∂Ωp
D, (8)

−ϱLRw̃LS · n = ¯̇mLS on ∂Ωp
N (9)

where ∂ΩD and ∂ΩN are complementary, ∂ΩD ∪ ∂ΩN = Γ and ∂ΩD ∩ ∂ΩN = 0.

2.4 Discretization

Space (finite element) and time (backward Euler) discretization finally yield

∫
Ω
NTϱLR [ϕβp,LR + (αB − ϕ)βp,SR]N

T dΩ
p̂t+1

LR − p̂t
LR

∆t
+

∫
Ω
∇NTϱLR

k

µLR
∇N dΩ p̂LR−

−
∫
Ω
∇NTϱ2LR

k

µLR
b dΩ+

∫
Ω
NTαBϱLRI

TBu dΩ
ût+1 − ût

∆t
=

∫
∂ΩN

NT ¯̇mLS dΓ
(10)

Source terms r are added in a general manner to the RHS:

∫
Ω
NTϱLR [ϕβp,LR + (αB − ϕ)βp,SR]N

T dΩ
p̂t+1

LR − p̂t
LR

∆t
+

∫
Ω
∇NTϱLR

k

µLR
∇N dΩ p̂LR

−
∫
Ω
∇NTϱ2LR

k

µLR
b dΩ+

∫
Ω
NTαBϱLRI

TBu dΩ
ût+1 − ût

∆t
=

∫
∂ΩN

NT ¯̇mLS dΓ +

∫
Ω
NTr dΩ = f̂p

(11)

3 Observations

• The integration domain Ω (mesh) of dimension N is associated with a boundary domain ∂Ω of
codimension 1 (i.e. area elements Γ are of dimension N − 1).

• The Neumann bc is here positive for an inflow of mass. Likewise the source term definition on the
RHS fixes the sign1. Neumann boundary conditions for vectorial quantities (e.g. tractions) defined

1The source term here is assigned as a function defined on the entire domain Ω. Practically, the source term is often assigned
to a subdomain Ωs ⊆ Ω. It can also be assigned to lower-dimensional entities (surfaces, lines) with an according change in
physical dimension.
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with respect to the Cartesian reference system are positive (negative) when pointing in the positive
(negative) coordinate direction defined by the mesh.

• Each integral of the weak form has to yield the same dimension. This fact helps to fix the units and
also represents the units of the nodal fluxes.

• The (generalized) nodal forces f̂p represent the residuals before the addition of source and Neumann
terms. This helps to evaluate mass flow rates, heat flow rates, reaction forces, etc. in response to
external input.

• The user typcially chooses a unit system convenient for the problem, for example: mNsK. Based
on this choice, there needs to be consistency between

– The units of the physical properties and variables (density, compressibility, permeability, pres-
sure, ...)

– The spatial units of the mesh

– The temporal units given in the time stepping scheme

4 Example

Basic choices are made already when specifying the mesh and the time stepping scheme, fixing length
and time units, respectively. Primary and secondary variables follow next. Boundary and source terms are
of particular interest and may seem non-trivial when entities with different dimensions are linked, e.g. 2D
sources in 3D domains. The axisymmetric case integrates over rdΩ, thus solves a 3D problem on a 2D
mesh. Table 1 gives some examples in different unit systems. Some rest on base units (kgm s), others
make use of derived units for practical convenience (mmNd).

The source terms r referenced in Tab. 1 are defined in OGS as volumetrically distributed source terms over
subdomains of varying dimension. OGS also offers the possibility to use nodal source terms, i.e. directly
specified nodal forces. This corresponds to an already performed integration on the discrete system, i.e.

rp =

∫
Ω
NTr dΩ (12)

where directly the value for rp will be specified at certain nodes.

Remark on the term (generalized) nodal forces: The term generalized force stems from the fact that in
solid mechanical problems nodal forces in the proper sense are assembled to obtain mechanical equilibri-
um. Once we move to thermodynamical systems with generalized degrees of freedom, we still speak of
the associated thermodynamic forces by analogy. Another useful structural similarity can be seen when
recognizing that a force is a momentum rate: 1N = 1 kgm s−1 s−1. While the mechanical system solves a
momentum balance by means of equilibrium of nodal forces (momentum rates), transport processes solve
mass balances by balancing nodal mass rates in kg s−1, heat transport processes solve energy balances
by means of nodal energy rates in J s−1, and so on. Thus, one can speak of generalized forces or, when
normalized to an area (i.e. per square meter), of generalized fluxes.
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